We've updated our
Privacy Policy effective December 15. Please read our updated Privacy Policy and tap

Symbolab Logo

Đạo hàm Bảng Ghi Chú

 

Quy Tắc Đạo Hàm

quy tắc quyền lực \frac{d}{dx}\left(x^a\right)=a\cdot x^{a-1}
Đạo hàm của một hằng số \frac{d}{dx}\left(a\right)=0
Quy tắc chênh lệch tổng \left(f\pm g\right)^'=f^'\pm g^'
liên tục ra \left(a\cdot f\right)^'=a\cdot f^'
Quy tắc nhân (f\cdot g)^'=f^'\cdot g+f\cdot g^'
quy tắc thương số \left(\frac{f}{g}\right)^'=\frac{f^'\cdot g-g^'\cdot f}{g^2}
Quy tắc dây chuyền \frac{df\left(u\right)}{dx}=\frac{df}{du}\cdot \frac{du}{dx}


Đạo Hàm Chung

\frac{d}{dx}\left(\ln(x))=\frac{1}{x} \frac{d}{dx}\left(\ln(\left|x\right|))=\frac{1}{x}
\frac{d}{dx}\left(e^{x})=e^{x} \frac{d}{dx}\left(\log(x))=\frac{1}{x\ln(10)}
\frac{d}{dx}\left(\log_{a}(x))=\frac{1}{x\ln(a)}


Đạo Hàm Lượng Giác

\frac{d}{dx}\left(\sin(x))=\cos(x) \frac{d}{dx}\left(\cos(x))=-\sin(x)
\frac{d}{dx}\left(\tan(x))=\sec^{2}(x) \frac{d}{dx}\left(\sec(x))=\frac{\tan(x)}{\cos(x)}
\frac{d}{dx}\left(\csc(x))=\frac{-\cot(x)}{\sin(x)} \frac{d}{dx}\left(\cot(x))=-\frac{1}{\sin^{2}(x)}


Đạo Hàm Cung Lượng Giác

\frac{d}{dx}\left(\arcsin(x))=\frac{1}{\sqrt{1-x^{2}}} \frac{d}{dx}\left(\arccos(x))=-\frac{1}{\sqrt{1-x^{2}}}
\frac{d}{dx}\left(\arctan(x))=\frac{1}{x^{2}+1} \frac{d}{dx}\left(\arcsec(x))=\frac{1}{\sqrt{x^2}\sqrt{x^2-1}}
\frac{d}{dx}\left(\arccsc(x))=-\frac{1}{\sqrt{x^2}\sqrt{x^2-1}} \frac{d}{dx}\left(\arccot(x))=-\frac{1}{x^{2}+1}


Đạo Hàm Hyperbol

\frac{d}{dx}\left(\sinh(x))=\cosh(x) \frac{d}{dx}\left(\cosh(x))=\sinh(x)
\frac{d}{dx}\left(\tanh(x))=\sech^{2}(x) \frac{d}{dx}\left(\sech(x))=\tanh(x)(-\sech(x))
\frac{d}{dx}\left(\csch(x))=-\coth(x)\csch(x) \frac{d}{dx}\left(\coth(x))=-\csch^{2}(x)


Đạo Hàm Cung Hyperbol

\frac{d}{dx}\left(\arcsinh(x))=\frac{1}{\sqrt{x^{2}+1}} \frac{d}{dx}\left(\arccosh(x))=\frac{1}{\sqrt{x-1}\sqrt{x+1}}
\frac{d}{dx}\left(\arctanh(x))=\frac{1}{1-x^2} \frac{d}{dx}\left(\arcsech(x))=\frac{\sqrt{\frac{2}{x+1}-1}}{(x-1)x}
\frac{d}{dx}\left(\arccsch(x))=-\frac{1}{\sqrt{\frac{1}{x^2}+1}x^2} \frac{d}{dx}\left(\arccoth(x))=\frac{1}{1-x^{2}}