miền 8/x
|
miền\:\frac{8}{x}
|
nghịch đảo f(x)=(2x-3)/3
|
nghịch\:đảo\:f(x)=\frac{2x-3}{3}
|
các đường tiệm cận f(x)=(-4x^2-2x+3)/(2x+1)
|
các\:đường\:tiệm\:cận\:f(x)=\frac{-4x^{2}-2x+3}{2x+1}
|
miền f(x)=x^8
|
miền\:f(x)=x^{8}
|
đường thẳng (0,0),(2,6)
|
đường\:thẳng\:(0,0),(2,6)
|
nghịch đảo f(x)=1-x/(10)
|
nghịch\:đảo\:f(x)=1-\frac{x}{10}
|
monotone intervals 1-5*x*e^{-x}
|
monotone\:intervals\:1-5\cdot\:x\cdot\:e^{-x}
|
phạm vi f(x)=-x^2+2x-4
|
phạm\:vi\:f(x)=-x^{2}+2x-4
|
song song 3x+y=5
|
song\:song\:3x+y=5
|
nghịch đảo f(x)=((x-3))/((x+7))
|
nghịch\:đảo\:f(x)=\frac{(x-3)}{(x+7)}
|
tính chẵn lẻ (sin(3y)cot(5y))/(ycot(4y))
|
tính\:chẵn\:lẻ\:\frac{\sin(3y)\cot(5y)}{y\cot(4y)}
|
extreme points f(x)=\sqrt[3]{x+3}
|
extreme\:points\:f(x)=\sqrt[3]{x+3}
|
miền f(x)=(60)/(x(x+4))
|
miền\:f(x)=\frac{60}{x(x+4)}
|
monotone intervals f(x)=1-(3/(x^2-1))
|
monotone\:intervals\:f(x)=1-(\frac{3}{x^{2}-1})
|
nghịch đảo f(x)=2sqrt(x+3)
|
nghịch\:đảo\:f(x)=2\sqrt{x+3}
|
nghịch đảo f(x)=sin^2(x)
|
nghịch\:đảo\:f(x)=\sin^{2}(x)
|
các đường tiệm cận f(x)=(x^2-4)/(x^4-81)
|
các\:đường\:tiệm\:cận\:f(x)=\frac{x^{2}-4}{x^{4}-81}
|
miền f(x)=-2
|
miền\:f(x)=-2
|
trung điểm (-3,4)(1,2)
|
trung\:điểm\:(-3,4)(1,2)
|
miền 8/(t^2-81)
|
miền\:\frac{8}{t^{2}-81}
|
inflection points x^3-9x^2+27x+3
|
inflection\:points\:x^{3}-9x^{2}+27x+3
|
inflection points f(x)=8-3x^2-x^3
|
inflection\:points\:f(x)=8-3x^{2}-x^{3}
|
nghịch đảo f(x)=(\sqrt[5]{x}+2)^7
|
nghịch\:đảo\:f(x)=(\sqrt[5]{x}+2)^{7}
|
nghịch đảo f(x)=(x+2)^{1/5}+3
|
nghịch\:đảo\:f(x)=(x+2)^{\frac{1}{5}}+3
|
phạm vi f(x)=6x^2+7x-24
|
phạm\:vi\:f(x)=6x^{2}+7x-24
|
extreme points f(x)=2x-2
|
extreme\:points\:f(x)=2x-2
|
miền f(x)= 5/(x+10)
|
miền\:f(x)=\frac{5}{x+10}
|
miền g(x)=sqrt(8x)
|
miền\:g(x)=\sqrt{8x}
|
miền f(x)=2x^2+24x+76
|
miền\:f(x)=2x^{2}+24x+76
|
miền sin^2(x)
|
miền\:\sin^{2}(x)
|
miền f(x)=sqrt(2-x)+sqrt(x^2-1)
|
miền\:f(x)=\sqrt{2-x}+\sqrt{x^{2}-1}
|
nghịch đảo f(x)=-2x^3-6
|
nghịch\:đảo\:f(x)=-2x^{3}-6
|
miền-5/(2t^{3/2)}
|
miền\:-\frac{5}{2t^{\frac{3}{2}}}
|
miền e^{3x}
|
miền\:e^{3x}
|
nghịch đảo 2x^3-13
|
nghịch\:đảo\:2x^{3}-13
|
inflection points-(sin(x))/(cos(x))
|
inflection\:points\:-\frac{\sin(x)}{\cos(x)}
|
các đường tiệm cận f(x)=(4x^2)/(x^2+1)
|
các\:đường\:tiệm\:cận\:f(x)=\frac{4x^{2}}{x^{2}+1}
|
các hệ số chặn 2x^2-13x-7
|
các\:hệ\:số\:chặn\:2x^{2}-13x-7
|
extreme points f(x)=-4x^2-x+5
|
extreme\:points\:f(x)=-4x^{2}-x+5
|
phạm vi (x^2+6)/2
|
phạm\:vi\:\frac{x^{2}+6}{2}
|
miền (x^2-4x-32)/(x-8)
|
miền\:\frac{x^{2}-4x-32}{x-8}
|
miền y=xsqrt(36-x^2)
|
miền\:y=x\sqrt{36-x^{2}}
|
các hệ số chặn f(x)=x^5-5x^3+4x
|
các\:hệ\:số\:chặn\:f(x)=x^{5}-5x^{3}+4x
|
miền f(x)=x^3-x^2+1
|
miền\:f(x)=x^{3}-x^{2}+1
|
miền 3/(x-1)
|
miền\:\frac{3}{x-1}
|
các hệ số chặn f(x)=(x-3)sqrt(x)
|
các\:hệ\:số\:chặn\:f(x)=(x-3)\sqrt{x}
|
tính chẵn lẻ f(x)=x^2-x
|
tính\:chẵn\:lẻ\:f(x)=x^{2}-x
|
nghịch đảo y= 9/5 x+32
|
nghịch\:đảo\:y=\frac{9}{5}x+32
|
inflection points 3x^3-9x
|
inflection\:points\:3x^{3}-9x
|
vuông góc y=1-2x,\at (1,3)
|
vuông\:góc\:y=1-2x,\at\:(1,3)
|
nghịch đảo f(x)=12x+4
|
nghịch\:đảo\:f(x)=12x+4
|
miền f(x)=5+(6+x)^{1/2}
|
miền\:f(x)=5+(6+x)^{\frac{1}{2}}
|
tính tuần hoàn y=-1+3cos(2x)
|
tính\:tuần\:hoàn\:y=-1+3\cos(2x)
|
nghịch đảo (49)/(x^2)
|
nghịch\:đảo\:\frac{49}{x^{2}}
|
song song 5x-y=4
|
song\:song\:5x-y=4
|
khoảng cách (3,3)(-2,-1)
|
khoảng\:cách\:(3,3)(-2,-1)
|
nghịch đảo f(x)=x^2-3,x<= 0
|
nghịch\:đảo\:f(x)=x^{2}-3,x\le\:0
|
nghịch đảo (ln(x))^3
|
nghịch\:đảo\:(\ln(x))^{3}
|
khoảng cách (3,4)(-2,6)
|
khoảng\:cách\:(3,4)(-2,6)
|
miền f(x)= 1/((x-3)(x-7))
|
miền\:f(x)=\frac{1}{(x-3)(x-7)}
|
các đường tiệm cận 3+1/x
|
các\:đường\:tiệm\:cận\:3+\frac{1}{x}
|
miền f(x)=x^2-5
|
miền\:f(x)=x^{2}-5
|
critical points =0.0002x^2-0.0317x+2.036
|
critical\:points\:=0.0002x^{2}-0.0317x+2.036
|
critical points f(x)=sin(2x)
|
critical\:points\:f(x)=\sin(2x)
|
miền f(x)=sqrt(1/3 (x+4))-1
|
miền\:f(x)=\sqrt{\frac{1}{3}(x+4)}-1
|
phạm vi f(x)=-3x^2-18x-24
|
phạm\:vi\:f(x)=-3x^{2}-18x-24
|
extreme points f(x)=x^3+2x^2-4x
|
extreme\:points\:f(x)=x^{3}+2x^{2}-4x
|
nghịch đảo f(x)=-4.9(t+3)^2+45.8
|
nghịch\:đảo\:f(x)=-4.9(t+3)^{2}+45.8
|
phạm vi-x^2+1
|
phạm\:vi\:-x^{2}+1
|
các đường tiệm cận f(x)= x/(x^2-x-1)
|
các\:đường\:tiệm\:cận\:f(x)=\frac{x}{x^{2}-x-1}
|
miền tan(2x)
|
miền\:\tan(2x)
|
nghịch đảo f(x)=-2^{x-3}+3
|
nghịch\:đảo\:f(x)=-2^{x-3}+3
|
nghịch đảo f(x)= 4/x+2
|
nghịch\:đảo\:f(x)=\frac{4}{x}+2
|
inflection points f(x)=2.5x^2-15x+8
|
inflection\:points\:f(x)=2.5x^{2}-15x+8
|
các hệ số chặn f(x)=y=x-5
|
các\:hệ\:số\:chặn\:f(x)=y=x-5
|
các hệ số chặn f(x)=(1/3)^x
|
các\:hệ\:số\:chặn\:f(x)=(\frac{1}{3})^{x}
|
trung điểm (10,-8)(8,0)
|
trung\:điểm\:(10,-8)(8,0)
|
phạm vi y=x
|
phạm\:vi\:y=x
|
miền f(x)= 3/(sqrt(x-8))
|
miền\:f(x)=\frac{3}{\sqrt{x-8}}
|
extreme points f(x)=129x-0.5x^4+900
|
extreme\:points\:f(x)=129x-0.5x^{4}+900
|
miền f(x)=(8x)/(9x-1)
|
miền\:f(x)=\frac{8x}{9x-1}
|
đường thẳng (2,5),(-5,-4)
|
đường\:thẳng\:(2,5),(-5,-4)
|
đường thẳng (0,(pi)/2),(pi,-(pi)/2)
|
đường\:thẳng\:(0,\frac{\pi}{2}),(\pi,-\frac{\pi}{2})
|
miền (\sqrt[4]{x})^5
|
miền\:(\sqrt[4]{x})^{5}
|
tính chẵn lẻ ln(cos(x))tan(x)dx
|
tính\:chẵn\:lẻ\:\ln(\cos(x))\tan(x)dx
|
f(x)=-2x
|
f(x)=-2x
|
đường thẳng (7,4)(-3,-3)
|
đường\:thẳng\:(7,4)(-3,-3)
|
hệ số góc 8
|
hệ\:số\:góc\:8
|
miền (x+3)/(x-2)
|
miền\:\frac{x+3}{x-2}
|
phạm vi 4x^2
|
phạm\:vi\:4x^{2}
|
extreme points f(x)=x^3+3x^2-9x+1
|
extreme\:points\:f(x)=x^{3}+3x^{2}-9x+1
|
inflection points f(x)=((x^2+1))/(x^2)
|
inflection\:points\:f(x)=\frac{(x^{2}+1)}{x^{2}}
|
các đường tiệm cận y= x/((x-1)^2)
|
các\:đường\:tiệm\:cận\:y=\frac{x}{(x-1)^{2}}
|
hệ số góc 3x+my=5
|
hệ\:số\:góc\:3x+my=5
|
miền f(x)= 7/(sqrt(t))
|
miền\:f(x)=\frac{7}{\sqrt{t}}
|
các hệ số chặn (3x-3)/(x^2-1)
|
các\:hệ\:số\:chặn\:\frac{3x-3}{x^{2}-1}
|
phạm vi 1-2sqrt(4-5X)
|
phạm\:vi\:1-2\sqrt{4-5X}
|
critical points 3xsqrt(4x^2+2)
|
critical\:points\:3x\sqrt{4x^{2}+2}
|
nghịch đảo f(x)=(x-7)/2
|
nghịch\:đảo\:f(x)=\frac{x-7}{2}
|
phạm vi g(x)=(2x)/(sqrt(x^2+2x-24))
|
phạm\:vi\:g(x)=\frac{2x}{\sqrt{x^{2}+2x-24}}
|