integral of sqrt(4x^2+9x^4)
|
\int\:\sqrt{4x^{2}+9x^{4}}dx
|
derivative of 10^{nx}
|
\frac{d}{dx}(10^{nx})
|
derivative of f(x)=(14)/((x+4)^3)
|
derivative\:of\:f(x)=\frac{14}{(x+4)^{3}}
|
implicit derivative (dy)/(dx),y=(6x+9)/(54x^5)
|
implicit\:derivative\:\frac{dy}{dx},y=\frac{6x+9}{54x^{5}}
|
limit as x approaching 0 of x^x
|
\lim_{x\to\:0}(x^{x})
|
integral from-infinity to infinity of 1/(x^2)
|
\int_{\:-\infty\:}^{\infty\:}\frac{1}{x^{2}}dx
|
(dy}{dx}=\frac{cos(x))/y
|
\frac{dy}{dx}=\frac{\cos(x)}{y}
|
sum from n=1 to infinity of (5n)/(2n-1)
|
\sum_{n=1}^{\infty\:}\frac{5n}{2n-1}
|
integral of tk
|
\int\:tkdt
|
limit as x approaching infinity of sqrt(9+x^2)
|
\lim_{x\to\:\infty\:}(\sqrt{9+x^{2}})
|
integral from 0 to 1 of integral from x to 2-x^2 of xy
|
\int_{\:0}^{1}\int_{x}^{2-x^{2}}xydydx
|
limit as x approaching 1 of ((1-x^2))/((x^2-x))
|
\lim_{x\to\:1}(\frac{(1-x^{2})}{(x^{2}-x)})
|
integral from 0 to 1 of x-1
|
\int_{\:0}^{1}x-1dx
|
limit as n approaching infinity of (nsqrt(n))/(n^2+n+2)
|
\lim_{n\to\:\infty\:}(\frac{n\sqrt{n}}{n^{2}+n+2})
|
derivative of (8/(sqrt(x)))
|
derivative\:of\:(\frac{8}{\sqrt{x}})
|
implicit derivative (d^2y)/(dx^2),-3x^2+xy=10
|
implicit\:derivative\:\frac{d^{2}y}{dx^{2}},-3x^{2}+xy=10
|
integral of sec^2(x/3)
|
\int\:\sec^{2}(\frac{x}{3})dx
|
integral of (x^5+4)^{12}x^4
|
\int\:(x^{5}+4)^{12}x^{4}dx
|
integral of (x^2+1)/((x-2)^3)
|
\int\:\frac{x^{2}+1}{(x-2)^{3}}dx
|
limit as x approaching infinity of sqrt(x^4+3x^2)-x^2
|
\lim_{x\to\:\infty\:}(\sqrt{x^{4}+3x^{2}}-x^{2})
|
integral of (x+2)/(x^2)
|
\int\:\frac{x+2}{x^{2}}dx
|
diện tích 2^x,-4,4
|
diện\:tích\:2^{x},-4,4
|
integral of (3^x)/(3-3^x)
|
\int\:\frac{3^{x}}{3-3^{x}}dx
|
derivative of (ln(x)/(sin(x)))
|
\frac{d}{dx}(\frac{\ln(x)}{\sin(x)})
|
limit as x approaching 1 of (x-1)/(x^2+8x-9)
|
\lim_{x\to\:1}(\frac{x-1}{x^{2}+8x-9})
|
integral of 1/((2-3x))
|
\int\:\frac{1}{(2-3x)}dx
|
integral of 7/(x^2)
|
\int\:\frac{7}{x^{2}}dx
|
(\partial)/(\partial x)(ln(4x))
|
\frac{\partial\:}{\partial\:x}(\ln(4x))
|
integral of 20x^3
|
\int\:20x^{3}dx
|
(dQ)/(dt)=0.03(1-Q)^{2/3}
|
\frac{dQ}{dt}=0.03(1-Q)^{\frac{2}{3}}
|
sum from n=1 to infinity}(e^{npi of)/(pi^{ne)}
|
\sum_{n=1}^{\infty\:}\frac{e^{n\pi}}{\pi^{ne}}
|
y^{\prime \prime}-3y^{\prime}-54y=0
|
y^{\prime\:\prime\:}-3y^{\prime\:}-54y=0
|
derivative of x^{8cos(x})
|
\frac{d}{dx}(x^{8\cos(x)})
|
integral of-x/(1-x)
|
\int\:-\frac{x}{1-x}dx
|
tangent of-x^3+9x^2-6x+9,\at (7,65)
|
tangent\:of\:-x^{3}+9x^{2}-6x+9,\at\:(7,65)
|
y^{\prime}=(4x^3+1)/(2y-6)
|
y^{\prime\:}=\frac{4x^{3}+1}{2y-6}
|
limit as x approaching infinity of (2x-1)/(sqrt(x^2+2))
|
\lim_{x\to\:\infty\:}(\frac{2x-1}{\sqrt{x^{2}+2}})
|
d/(dt)((tsin(t))/(1+t))
|
\frac{d}{dt}(\frac{t\sin(t)}{1+t})
|
derivative of y=5x^2-10x-6x^{-2}
|
derivative\:of\:y=5x^{2}-10x-6x^{-2}
|
limit as x approaching 5-of (x^2+x-30)/(x-5)
|
\lim_{x\to\:5-}(\frac{x^{2}+x-30}{x-5})
|
integral of 0.1x^2
|
\int\:0.1x^{2}dx
|
integral of 6/(x^2-x-2)
|
\int\:\frac{6}{x^{2}-x-2}dx
|
y^{\prime}(1-xy^{1985})=y^{1986}
|
y^{\prime\:}(1-xy^{1985})=y^{1986}
|
integral of (5x^3-3sqrt(x))/x
|
\int\:\frac{5x^{3}-3\sqrt{x}}{x}dx
|
limit as x approaching infinity of 1/(ln(x))-1/(ln(2))
|
\lim_{x\to\:\infty\:}(\frac{1}{\ln(x)}-\frac{1}{\ln(2)})
|
integral from 2sqrt(2) to 4 of 1/(t^3sqrt(t^2-4))
|
\int_{\:2\sqrt{2}}^{4}\frac{1}{t^{3}\sqrt{t^{2}-4}}dt
|
y^{\prime}+ycos(x)=0
|
y^{\prime\:}+ycos(x)=0
|
taylor sqrt(x+1)
|
taylor\:\sqrt{x+1}
|
integral from 1 to 2 of (x^2+8)/(3x-x^2)
|
\int_{\:1}^{2}\frac{x^{2}+8}{3x-x^{2}}dx
|
limit as x approaching infinity of (3/x}{e^{\frac{10)/x}-1}
|
\lim_{x\to\:\infty\:}(\frac{\frac{3}{x}}{e^{\frac{10}{x}}-1})
|
derivative of (x^2/(sqrt(x^2-1)))
|
\frac{d}{dx}(\frac{x^{2}}{\sqrt{x^{2}-1}})
|
derivative of (7+2x)/(5-8x)
|
derivative\:of\:\frac{7+2x}{5-8x}
|
limit as x approaching 0 of (8x+8xcos(8x))/(5sin(8x)cos(8x))
|
\lim_{x\to\:0}(\frac{8x+8x\cos(8x)}{5\sin(8x)\cos(8x)})
|
limit as (x,y) approaching (2,1) of 7x^3-x^2y^2
|
\lim_{(\:x,y)\to\:(2,1)}(7x^{3}-x^{2}y^{2})
|
limit as x approaching 2 of ((x^2-4))/(x^2-5x+6)
|
\lim_{x\to\:2}(\frac{(x^{2}-4)}{x^{2}-5x+6})
|
limit as x approaching infinity of (4x+5)^{1/x}
|
\lim_{x\to\:\infty\:}((4x+5)^{\frac{1}{x}})
|
partial derivative of 1/(tan(xy))
|
\frac{\partial}{\partial\:x}(\frac{1}{\tan(xy)})
|
limit as x approaching 0 of (tan(4x^2))/(5x^2)
|
\lim_{x\to\:0}(\frac{\tan(4x^{2})}{5x^{2}})
|
limit as x approaching 1-of (x^2+6x-7)/(x-1)
|
\lim_{x\to\:1-}(\frac{x^{2}+6x-7}{x-1})
|
(dy)/(dx)=(x+y+2)^2
|
\frac{dy}{dx}=(x+y+2)^{2}
|
derivative of sin(x)/(cos(x))
|
\frac{d}{dx}\frac{\sin(x)}{\cos(x)}
|
(\partial)/(\partial x)(e^{-2x}*cos(2y))
|
\frac{\partial\:}{\partial\:x}(e^{-2x}\cdot\:\cos(2y))
|
limit as x approaching infinity of (ln(x))/(5ln(x))
|
\lim_{x\to\:\infty\:}(\frac{\ln(x)}{5\ln(x)})
|
integral from-infinity to 3 of (e^{3x})/(1+e^{3x)}
|
\int_{\:-\infty\:}^{3}\frac{e^{3x}}{1+e^{3x}}dx
|
integral of (5x-3)/(x^2-1)
|
\int\:\frac{5x-3}{x^{2}-1}dx
|
tangent of y= 6/(sqrt(x))
|
tangent\:of\:y=\frac{6}{\sqrt{x}}
|
limit as x approaching 0 of (sin(17x))/(5x)
|
\lim_{x\to\:0}(\frac{\sin(17x)}{5x})
|
integral of 7(sin(x))^4(cos(x))^2
|
\int\:7(\sin(x))^{4}(\cos(x))^{2}dx
|
x(dy)/(dx)=x^3+14x^3y
|
x\frac{dy}{dx}=x^{3}+14x^{3}y
|
derivative of ln(x)^2
|
\frac{d}{dx}(\ln(x))^{2}
|
integral of cxy+1/4
|
\int\:cxy+\frac{1}{4}
|
partial derivative of-(x-y/(x^2(x+y)))
|
\frac{\partial}{\partial\:x}(-\frac{x-y}{x^{2}(x+y)})
|
limit as x approaching infinity of sqrt(x+5)-sqrt(x+9)
|
\lim_{x\to\:\infty\:}(\sqrt{x+5}-\sqrt{x+9})
|
tangent of f(x)=(sqrt(x))/(4x-7),\at x=1
|
tangent\:of\:f(x)=\frac{\sqrt{x}}{4x-7},\at\:x=1
|
limit as (x,y) approaching (0,0) of (y^4+2x^2)/(y^4+x^2)
|
\lim_{(\:x,y)\to\:(0,0)}(\frac{y^{4}+2x^{2}}{y^{4}+x^{2}})
|
tangent of-5x^2+x-2
|
tangent\:of\:-5x^{2}+x-2
|
sum from n=0 to infinity}(-1)^{n-1 of (n^2)/(n^3+1)
|
\sum_{n=0}^{\infty\:}(-1)^{n-1}\frac{n^{2}}{n^{3}+1}
|
limit as x approaching infinity of arctan(x^4-x^9)
|
\lim_{x\to\:\infty\:}(\arctan(x^{4}-x^{9}))
|
integral from 0 to 9 of 1/(81+x^2)
|
\int_{\:0}^{9}\frac{1}{81+x^{2}}dx
|
y^{\prime \prime}+4y^{\prime}+5y=-20e^t,y(0)=-4,y^{\prime}(0)=1
|
y^{\prime\:\prime\:}+4y^{\prime\:}+5y=-20e^{t},y(0)=-4,y^{\prime\:}(0)=1
|
integral from 1 to 4 of 6e^{sqrt(x)}
|
\int_{\:1}^{4}6e^{\sqrt{x}}dx
|
derivative of f(x,y)=(x)^2+(y)^4
|
derivative\:of\:f(x,y)=(x)^{2}+(y)^{4}
|
derivative of f(x)=2(13-x^4)
|
derivative\:of\:f(x)=2(13-x^{4})
|
limit as x approaching 0+of (cos(x)-1+x)/(x(cos(x)-1))
|
\lim_{x\to\:0+}(\frac{\cos(x)-1+x}{x(\cos(x)-1)})
|
limit as x approaching infinity of (e^{2x})/((6/5)^{2x)}
|
\lim_{x\to\:\infty\:}(\frac{e^{2x}}{(\frac{6}{5})^{2x}})
|
limit as x approaching 3+of 1/(|x-3|)
|
\lim_{x\to\:3+}(\frac{1}{\left|x-3\right|})
|
limit as y approaching 0 of (y^2)/(y^4)
|
\lim_{y\to\:0}(\frac{y^{2}}{y^{4}})
|
limit as x approaching infinity of (sin(sqrt(x)))/(sqrt(x))
|
\lim_{x\to\:\infty\:}(\frac{\sin(\sqrt{x})}{\sqrt{x}})
|
derivative of f(x)=e^x-x^7
|
derivative\:of\:f(x)=e^{x}-x^{7}
|
limit as x approaching 1 of (x^2-9)/(x-3)
|
\lim_{x\to\:1}(\frac{x^{2}-9}{x-3})
|
diện tích y^2=4x+4,y=4x-16
|
diện\:tích\:y^{2}=4x+4,y=4x-16
|
implicit derivative (d^2y)/(dx^2),y= 1/(x^{11)}
|
implicit\:derivative\:\frac{d^{2}y}{dx^{2}},y=\frac{1}{x^{11}}
|
limit as x approaching+0 of e^{4x+2}
|
\lim_{x\to\:+0}(e^{4x+2})
|
integral from 1 to 8 of 1/(xsqrt(16x^2-9))
|
\int_{\:1}^{8}\frac{1}{x\sqrt{16x^{2}-9}}dx
|
limit as x approaching-infinity of 3x^4+2x^3+5x^2+x-1
|
\lim_{x\to\:-\infty\:}(3x^{4}+2x^{3}+5x^{2}+x-1)
|
derivative of tan^n(x)
|
\frac{d}{dx}(\tan^{n}(x))
|
integral of e^{-x^6}(-6x^5)
|
\int\:e^{-x^{6}}(-6x^{5})dx
|
integral of (2x)/((x^2+4)^2)
|
\int\:\frac{2x}{(x^{2}+4)^{2}}dx
|
limit as x approaching 0+of (6sin(x))^{7tan(x)}
|
\lim_{x\to\:0+}((6\sin(x))^{7\tan(x)})
|
\lim x,y)\to (0,0)}((x^2sin^2(y))/(x^2+8y^2))
|
\lim\:x,y)\to\:(0,0)}(\frac{x^{2}\sin^{2}(y)}{x^{2}+8y^{2}})
|