các đường tiệm cận f(x)=(x^3)/(81-x^2)
|
các\:đường\:tiệm\:cận\:f(x)=\frac{x^{3}}{81-x^{2}}
|
các hệ số chặn (9-3x)/(x-4)
|
các\:hệ\:số\:chặn\:\frac{9-3x}{x-4}
|
đối xứng x^2+9y^2=9
|
đối\:xứng\:x^{2}+9y^{2}=9
|
các hệ số chặn-(x-5)^2-1
|
các\:hệ\:số\:chặn\:-(x-5)^{2}-1
|
miền (5y-8)/(11)
|
miền\:\frac{5y-8}{11}
|
extreme points f(x)=x^3-2x
|
extreme\:points\:f(x)=x^{3}-2x
|
phạm vi f(x)=-3sqrt(x)
|
phạm\:vi\:f(x)=-3\sqrt{x}
|
đường thẳng (3,)(4,)
|
đường\:thẳng\:(3,)(4,)
|
miền f(x)= 1/(x-9)
|
miền\:f(x)=\frac{1}{x-9}
|
tính chẵn lẻ f=(5xtan(x))/(x^2+1)
|
tính\:chẵn\:lẻ\:f=\frac{5x\tan(x)}{x^{2}+1}
|
các đường tiệm cận f(x)=(5-2x)/(6x+3)
|
các\:đường\:tiệm\:cận\:f(x)=\frac{5-2x}{6x+3}
|
inflection points f(x)=(x^2+1)/(x^2-1)
|
inflection\:points\:f(x)=\frac{x^{2}+1}{x^{2}-1}
|
hệ số góc 1/7
|
hệ\:số\:góc\:\frac{1}{7}
|
critical points 18x-3/2 x^2
|
critical\:points\:18x-\frac{3}{2}x^{2}
|
hệ số góc 4x+3y=-6
|
hệ\:số\:góc\:4x+3y=-6
|
inflection points f(x)=(x^2-1)^3
|
inflection\:points\:f(x)=(x^{2}-1)^{3}
|
critical points f(x)=x^4+8x^3+18x^2-8
|
critical\:points\:f(x)=x^{4}+8x^{3}+18x^{2}-8
|
critical points f(x)= 2/(x^3)
|
critical\:points\:f(x)=\frac{2}{x^{3}}
|
các hệ số chặn h(x)=x^3-5x^2+4x-20
|
các\:hệ\:số\:chặn\:h(x)=x^{3}-5x^{2}+4x-20
|
miền f(x)=(x+6)/(x(x+11))
|
miền\:f(x)=\frac{x+6}{x(x+11)}
|
các đường tiệm cận f(x)=(x-8)/(x+5)
|
các\:đường\:tiệm\:cận\:f(x)=\frac{x-8}{x+5}
|
phạm vi tan((pi)/9 x)
|
phạm\:vi\:\tan(\frac{\pi}{9}x)
|
miền 1+x^2
|
miền\:1+x^{2}
|
phạm vi sqrt(x+4)-1
|
phạm\:vi\:\sqrt{x+4}-1
|
các đường tiệm cận f(x)= x/(x^2+2x)
|
các\:đường\:tiệm\:cận\:f(x)=\frac{x}{x^{2}+2x}
|
khoảng cách (5,4),(4,7)
|
khoảng\:cách\:(5,4),(4,7)
|
miền f(x)=(x^2-2x+7)/(sqrt(4-x))
|
miền\:f(x)=\frac{x^{2}-2x+7}{\sqrt{4-x}}
|
phạm vi f(x)=(11)/x
|
phạm\:vi\:f(x)=\frac{11}{x}
|
miền f(x)=sin(7x)
|
miền\:f(x)=\sin(7x)
|
inflection points f(x)=-2/(x+3)
|
inflection\:points\:f(x)=-\frac{2}{x+3}
|
miền |x|
|
miền\:|x|
|
miền f(x)=((5x+7))/(9x)
|
miền\:f(x)=\frac{(5x+7)}{9x}
|
các hệ số chặn (x^2-16)/(x-4)
|
các\:hệ\:số\:chặn\:\frac{x^{2}-16}{x-4}
|
đường thẳng (2,-3),(4,5)
|
đường\:thẳng\:(2,-3),(4,5)
|
monotone intervals f(x)=(x-7)e^{-6x}
|
monotone\:intervals\:f(x)=(x-7)e^{-6x}
|
nghịch đảo f(x)=5x-11
|
nghịch\:đảo\:f(x)=5x-11
|
các đường tiệm cận f(x)=(x+2)/(2x-9)
|
các\:đường\:tiệm\:cận\:f(x)=\frac{x+2}{2x-9}
|
phạm vi ((x^2+5))/(2x^2-x-1)
|
phạm\:vi\:\frac{(x^{2}+5)}{2x^{2}-x-1}
|
đối xứng x^2+2x-1
|
đối\:xứng\:x^{2}+2x-1
|
extreme points f(x)=12+4x-x^2,[0,5]
|
extreme\:points\:f(x)=12+4x-x^{2},[0,5]
|
miền f(x)=6
|
miền\:f(x)=6
|
hệ số góc intercept 6x-10y=-3
|
hệ\:số\:góc\:intercept\:6x-10y=-3
|
nghịch đảo f(x)=7-2x
|
nghịch\:đảo\:f(x)=7-2x
|
miền f(x)=(x-3)
|
miền\:f(x)=(x-3)
|
cos(x)sin(x)
|
\cos(x)\sin(x)
|
miền 1/(x^2+5x-24)
|
miền\:\frac{1}{x^{2}+5x-24}
|
hệ số góc intercept y= 2/3 x+5
|
hệ\:số\:góc\:intercept\:y=\frac{2}{3}x+5
|
miền f(x)=(sqrt(5-x))/(sqrt(x^2-1))
|
miền\:f(x)=\frac{\sqrt{5-x}}{\sqrt{x^{2}-1}}
|
hệ số góc intercept y=-2x-4
|
hệ\:số\:góc\:intercept\:y=-2x-4
|
phạm vi f(x)=x^6
|
phạm\:vi\:f(x)=x^{6}
|
các đường tiệm cận f(x)=(4x+3)/(2x-6)
|
các\:đường\:tiệm\:cận\:f(x)=\frac{4x+3}{2x-6}
|
khoảng cách (-4,6)(0,-10)
|
khoảng\:cách\:(-4,6)(0,-10)
|
nghịch đảo f(x)=3(x-41)
|
nghịch\:đảo\:f(x)=3(x-41)
|
hệ số góc intercept 2-(3y+2x)/3 =3
|
hệ\:số\:góc\:intercept\:2-\frac{3y+2x}{3}=3
|
hệ số góc intercept 1/4 x+y=-2/7
|
hệ\:số\:góc\:intercept\:\frac{1}{4}x+y=-\frac{2}{7}
|
extreme points f(x)=x^3-6x^2+9x
|
extreme\:points\:f(x)=x^{3}-6x^{2}+9x
|
nghịch đảo f(x)=-sqrt(2x+6)-4
|
nghịch\:đảo\:f(x)=-\sqrt{2x+6}-4
|
miền f(x)=(5(x^2-x-90))/(6(x^2-100))
|
miền\:f(x)=\frac{5(x^{2}-x-90)}{6(x^{2}-100)}
|
các đường tiệm cận y=(2x+3)/(x-1)
|
các\:đường\:tiệm\:cận\:y=\frac{2x+3}{x-1}
|
đối xứng y=3x^2+18
|
đối\:xứng\:y=3x^{2}+18
|
hệ số góc y=1.4x+17.2
|
hệ\:số\:góc\:y=1.4x+17.2
|
miền-5/(2tsqrt(t))
|
miền\:-\frac{5}{2t\sqrt{t}}
|
hệ số góc y=-3x-53
|
hệ\:số\:góc\:y=-3x-53
|
nghịch đảo (6000)/(5+1995e^{-0.75x)}
|
nghịch\:đảo\:\frac{6000}{5+1995e^{-0.75x}}
|
các đường tiệm cận f(x)=(x^2+6x+5)/(x^2-9)
|
các\:đường\:tiệm\:cận\:f(x)=\frac{x^{2}+6x+5}{x^{2}-9}
|
đối xứng f(-2)=-3
|
đối\:xứng\:f(-2)=-3
|
miền 1/(x^{3/2)+3x}
|
miền\:\frac{1}{x^{\frac{3}{2}}+3x}
|
các đường tiệm cận f(x)=((x-2)(x+3))/((2x-3)(x-2))
|
các\:đường\:tiệm\:cận\:f(x)=\frac{(x-2)(x+3)}{(2x-3)(x-2)}
|
phạm vi log_{3}(x+2)
|
phạm\:vi\:\log_{3}(x+2)
|
các hệ số chặn f(x)=y=3x
|
các\:hệ\:số\:chặn\:f(x)=y=3x
|
đường thẳng (-7,-7)(-3,6)
|
đường\:thẳng\:(-7,-7)(-3,6)
|
nghịch đảo f(x)=4\sqrt[3]{x}+1
|
nghịch\:đảo\:f(x)=4\sqrt[3]{x}+1
|
phạm vi-(7)^x
|
phạm\:vi\:-(7)^{x}
|
các đường tiệm cận f(x)=(2)\div (x^2-16)
|
các\:đường\:tiệm\:cận\:f(x)=(2)\div\:(x^{2}-16)
|
miền f(x)=(15x^2-16x-15)/(3x^2-8x+5)
|
miền\:f(x)=\frac{15x^{2}-16x-15}{3x^{2}-8x+5}
|
miền f(x)= 4/(x+2)
|
miền\:f(x)=\frac{4}{x+2}
|
tính chẵn lẻ f(x)=x^4-3x^2-4
|
tính\:chẵn\:lẻ\:f(x)=x^{4}-3x^{2}-4
|
biên độ tan(x)-4
|
biên\:độ\:\tan(x)-4
|
nghịch đảo f(x)=x^2-81
|
nghịch\:đảo\:f(x)=x^{2}-81
|
miền cos(5x)
|
miền\:\cos(5x)
|
phạm vi-2x^2+8x+24
|
phạm\:vi\:-2x^{2}+8x+24
|
phạm vi 2/(2-x)
|
phạm\:vi\:\frac{2}{2-x}
|
inflection points f(x)=5x^4-30x^2
|
inflection\:points\:f(x)=5x^{4}-30x^{2}
|
inflection points (x^2-4)/(x^2-1)
|
inflection\:points\:\frac{x^{2}-4}{x^{2}-1}
|
các đường tiệm cận f(x)=-(x-1)/(x+3)
|
các\:đường\:tiệm\:cận\:f(x)=-\frac{x-1}{x+3}
|
trung điểm (7,7)(13,13)
|
trung\:điểm\:(7,7)(13,13)
|
khoảng cách (-6,3)(8,-3)
|
khoảng\:cách\:(-6,3)(8,-3)
|
các đường tiệm cận f(x)=(x^2-36)/(x(x-6))
|
các\:đường\:tiệm\:cận\:f(x)=\frac{x^{2}-36}{x(x-6)}
|
phạm vi sin(t)-(cos(t)+sin(t))
|
phạm\:vi\:\sin(t)-(\cos(t)+\sin(t))
|
extreme points f(x)=x^3-9x^2+3
|
extreme\:points\:f(x)=x^{3}-9x^{2}+3
|
miền f(x)=log_{b}(x)
|
miền\:f(x)=\log_{b}(x)
|
critical points y=(x^3)/3+(x^2)/2-2x+7
|
critical\:points\:y=\frac{x^{3}}{3}+\frac{x^{2}}{2}-2x+7
|
nghịch đảo y=9x^2-4
|
nghịch\:đảo\:y=9x^{2}-4
|
đối xứng y=3x^2+6x-12
|
đối\:xứng\:y=3x^{2}+6x-12
|
miền f(x)=x^4+16x^2+72
|
miền\:f(x)=x^{4}+16x^{2}+72
|
các hệ số chặn y=3x+2
|
các\:hệ\:số\:chặn\:y=3x+2
|
các đường tiệm cận (3x)/(x^2-x)
|
các\:đường\:tiệm\:cận\:\frac{3x}{x^{2}-x}
|
miền f(x)=(x-2)/(x+5)
|
miền\:f(x)=\frac{x-2}{x+5}
|
nghịch đảo f(x)= 3/4 x+12
|
nghịch\:đảo\:f(x)=\frac{3}{4}x+12
|
miền f(x)= 1/(1-sqrt(1-x))
|
miền\:f(x)=\frac{1}{1-\sqrt{1-x}}
|