extreme f(x)= 1/3 x^3-1/2 x^2
|
extreme\:f(x)=\frac{1}{3}x^{3}-\frac{1}{2}x^{2}
|
extreme xsqrt(x^2+25)
|
extreme\:x\sqrt{x^{2}+25}
|
extreme f(x,y)=2x^2+3xy+4y^2+2x-10y
|
extreme\:f(x,y)=2x^{2}+3xy+4y^{2}+2x-10y
|
extreme 1/(2x+3)
|
extreme\:\frac{1}{2x+3}
|
f(x,y)=(-2y)/(4x^2+y^2+2)
|
f(x,y)=\frac{-2y}{4x^{2}+y^{2}+2}
|
nghịch đảo f(x)=\sqrt[3]{x^5}+10
|
nghịch\:đảo\:f(x)=\sqrt[3]{x^{5}}+10
|
extreme f(x)=xe^{-6x},0<= x<= 2
|
extreme\:f(x)=xe^{-6x},0\le\:x\le\:2
|
extreme f(x)=x^6(x-4)^5
|
extreme\:f(x)=x^{6}(x-4)^{5}
|
extreme f(x)=x^3-4x^2+5
|
extreme\:f(x)=x^{3}-4x^{2}+5
|
P(q,s)=q+8+s
|
P(q,s)=q+8+s
|
f(r,s)=sqrt(rse^{2+r)}
|
f(r,s)=\sqrt{rse^{2+r}}
|
extreme x^3-3x+3
|
extreme\:x^{3}-3x+3
|
extreme f(x)=(x-6)*(\sqrt[3]{x+3})
|
extreme\:f(x)=(x-6)\cdot\:(\sqrt[3]{x+3})
|
extreme f(x)=sqrt(9-x^2),-1<= x<= 3
|
extreme\:f(x)=\sqrt{9-x^{2}},-1\le\:x\le\:3
|
extreme y=x^{5/3}-5x^{2/3}
|
extreme\:y=x^{\frac{5}{3}}-5x^{\frac{2}{3}}
|
extreme f(x)=-(x-1)^2(x-5)
|
extreme\:f(x)=-(x-1)^{2}(x-5)
|
nghịch đảo 1+sqrt(3+4x)
|
nghịch\:đảo\:1+\sqrt{3+4x}
|
extreme f(x,y)=3x^3-9x+9xy^2
|
extreme\:f(x,y)=3x^{3}-9x+9xy^{2}
|
extreme ln(x+2)(x-1)^2
|
extreme\:\ln(x+2)(x-1)^{2}
|
extreme f(x,y)=4x+6y-x^2-y^2+9
|
extreme\:f(x,y)=4x+6y-x^{2}-y^{2}+9
|
extreme f(x)=x^3+6x^2+9
|
extreme\:f(x)=x^{3}+6x^{2}+9
|
extreme y= x/(x^2+9)
|
extreme\:y=\frac{x}{x^{2}+9}
|
extreme x^3+3x^2-2
|
extreme\:x^{3}+3x^{2}-2
|
extreme f(x)=x^2-4,-3<= x<= 2
|
extreme\:f(x)=x^{2}-4,-3\le\:x\le\:2
|
cực tiểu f(x)=(7.8x^2-225x+1709)
|
cực\:tiểu\:f(x)=(7.8x^{2}-225x+1709)
|
extreme f(x)=-2x^3-2y^3+6xy+10
|
extreme\:f(x)=-2x^{3}-2y^{3}+6xy+10
|
extreme f(x)=4x^3-48x
|
extreme\:f(x)=4x^{3}-48x
|
nghịch đảo f(x)=9x^2,x<= 0
|
nghịch\:đảo\:f(x)=9x^{2},x\le\:0
|
extreme 8x^3+2xy-3x^2+y^2+1
|
extreme\:8x^{3}+2xy-3x^{2}+y^{2}+1
|
f(x)=3x^2-2x+y^2-4y+1
|
f(x)=3x^{2}-2x+y^{2}-4y+1
|
P(a,b)=2a+b
|
P(a,b)=2a+b
|
extreme y=x^2-2ln(x)
|
extreme\:y=x^{2}-2\ln(x)
|
extreme f(x)=-e^{2/7 x}
|
extreme\:f(x)=-e^{\frac{2}{7}x}
|
extreme f(x)=x^2(x-1)(2x+1)+y^2
|
extreme\:f(x)=x^{2}(x-1)(2x+1)+y^{2}
|
extreme f(x)=(4x-8)/(x^3)
|
extreme\:f(x)=\frac{4x-8}{x^{3}}
|
extreme f(x)=3x(x-5)^2
|
extreme\:f(x)=3x(x-5)^{2}
|
extreme f(x)=(x^2)/(2-x)
|
extreme\:f(x)=\frac{x^{2}}{2-x}
|
extreme f(x)=(2x+5)/3 ,0<= x<= 5
|
extreme\:f(x)=\frac{2x+5}{3},0\le\:x\le\:5
|
miền f(x)=(7x^2+9x-10)/(x^3)
|
miền\:f(x)=\frac{7x^{2}+9x-10}{x^{3}}
|
extreme y=-5(x-4)^4+2
|
extreme\:y=-5(x-4)^{4}+2
|
extreme x^2+4xy+y^2-40x-56y+1
|
extreme\:x^{2}+4xy+y^{2}-40x-56y+1
|
extreme xe^{3-(x/4)}
|
extreme\:xe^{3-(\frac{x}{4})}
|
extreme xy(1-x-y)
|
extreme\:xy(1-x-y)
|
extreme f(x)=x^4-32x^2+256
|
extreme\:f(x)=x^{4}-32x^{2}+256
|
f(x,y)=(x^3+5xy^2)/y
|
f(x,y)=\frac{x^{3}+5xy^{2}}{y}
|
extreme f(x)=6x^5-15x^4+10x^3
|
extreme\:f(x)=6x^{5}-15x^{4}+10x^{3}
|
extreme f(x)=5
|
extreme\:f(x)=5
|
extreme f(x)=8
|
extreme\:f(x)=8
|
extreme f(x)=6x^4-8x^3-24x^2+1
|
extreme\:f(x)=6x^{4}-8x^{3}-24x^{2}+1
|
extreme points f(x)=12x-2ln(x),x> 0
|
extreme\:points\:f(x)=12x-2\ln(x),x\gt\:0
|
f(x,y)=y+xe^y
|
f(x,y)=y+xe^{y}
|
extreme f(x,y)=x^2-3xy-y^2
|
extreme\:f(x,y)=x^{2}-3xy-y^{2}
|
extreme 2x^3-3xy+3y^3
|
extreme\:2x^{3}-3xy+3y^{3}
|
extreme f(x)=9x-x^3
|
extreme\:f(x)=9x-x^{3}
|
extreme f(x)=x^2+2+(243)/x
|
extreme\:f(x)=x^{2}+2+\frac{243}{x}
|
extreme f(x)=2x^3-7x^2-4x
|
extreme\:f(x)=2x^{3}-7x^{2}-4x
|
extreme f(x)=x^6+6x^5
|
extreme\:f(x)=x^{6}+6x^{5}
|
u(x,y)=kx+yx
|
u(x,y)=kx+yx
|
extreme 9x^2-4
|
extreme\:9x^{2}-4
|
extreme xsqrt(4-x^2),-1<= x<= 2
|
extreme\:x\sqrt{4-x^{2}},-1\le\:x\le\:2
|
các đường tiệm cận (x^2-9)^6
|
các\:đường\:tiệm\:cận\:(x^{2}-9)^{6}
|
G(M,r)=-M+1/8 ra
|
G(M,r)=-M+\frac{1}{8}ra
|
extreme f(x)=((x+4))/(x^2)
|
extreme\:f(x)=\frac{(x+4)}{x^{2}}
|
extreme f(x)=2x^3-6x^2+9x-2
|
extreme\:f(x)=2x^{3}-6x^{2}+9x-2
|
extreme f(x,y)=8y^2-8x^2-8y+3xy
|
extreme\:f(x,y)=8y^{2}-8x^{2}-8y+3xy
|
extreme f(x)=2x^3-24x+2
|
extreme\:f(x)=2x^{3}-24x+2
|
extreme f(x)=3\sqrt[3]{x}-4x
|
extreme\:f(x)=3\sqrt[3]{x}-4x
|
extreme y=((ln(x))^2)/x
|
extreme\:y=\frac{(\ln(x))^{2}}{x}
|
f(x,y)=-x^3+2y^3+27x-24y+3
|
f(x,y)=-x^{3}+2y^{3}+27x-24y+3
|
extreme f(x)=(x^2)/(e^x)
|
extreme\:f(x)=\frac{x^{2}}{e^{x}}
|
F(I,J)=(-3I+2J)
|
F(I,J)=(-3I+2J)
|
nghịch đảo f(x)=((4x-1))/((2x+3))
|
nghịch\:đảo\:f(x)=\frac{(4x-1)}{(2x+3)}
|
nghịch đảo 3/4 x-6
|
nghịch\:đảo\:\frac{3}{4}x-6
|
các đường tiệm cận ((2x-1))/(x^2-x-2)
|
các\:đường\:tiệm\:cận\:\frac{(2x-1)}{x^{2}-x-2}
|
f(x)=x_{1}x
|
f(x)=x_{1}x
|
cực tiểu 0.5x^2-130x+17555
|
cực\:tiểu\:0.5x^{2}-130x+17555
|
f(x,y)=x-y-x^2y+xy^2
|
f(x,y)=x-y-x^{2}y+xy^{2}
|
extreme f(x)=x(x-4)^2
|
extreme\:f(x)=x(x-4)^{2}
|
extreme f(x)=x^4-6x^2+9,0<= x<= 2
|
extreme\:f(x)=x^{4}-6x^{2}+9,0\le\:x\le\:2
|
extreme (sqrt(4-x^2))/x
|
extreme\:\frac{\sqrt{4-x^{2}}}{x}
|
f(x)=e^{-kx}
|
f(x)=e^{-kx}
|
f(x,y)=((2x-x^2)(2y-y^2))/(xy)
|
f(x,y)=\frac{(2x-x^{2})(2y-y^{2})}{xy}
|
extreme f(x,y)=x^3-y^2-12x+6y
|
extreme\:f(x,y)=x^{3}-y^{2}-12x+6y
|
extreme f(x)=x^4-8x^3+4
|
extreme\:f(x)=x^{4}-8x^{3}+4
|
miền f(x)=(2x)/(sqrt(x)-1)
|
miền\:f(x)=\frac{2x}{\sqrt{x}-1}
|
extreme y=x^5-x^3
|
extreme\:y=x^{5}-x^{3}
|
extreme x^3+1
|
extreme\:x^{3}+1
|
extreme x2^{-x}
|
extreme\:x2^{-x}
|
extreme f(x)=8x^3+2xy-3x^2+y^2+1
|
extreme\:f(x)=8x^{3}+2xy-3x^{2}+y^{2}+1
|
extreme f(x)=((x+1))/(x^2)
|
extreme\:f(x)=\frac{(x+1)}{x^{2}}
|
f(x,y)=2x^2+16y^2-4xy^2
|
f(x,y)=2x^{2}+16y^{2}-4xy^{2}
|
f(x,y)=(x+2y)^y
|
f(x,y)=(x+2y)^{y}
|
extreme f(x)=x^4-16x^3
|
extreme\:f(x)=x^{4}-16x^{3}
|
extreme f(x)=(2^2)/(2^4+16)
|
extreme\:f(x)=\frac{2^{2}}{2^{4}+16}
|
f(x,y)=2x^2-xy-3y^2-3x+7y
|
f(x,y)=2x^{2}-xy-3y^{2}-3x+7y
|
tính tuần hoàn f(x)=X[n]=5sin(2n)
|
tính\:tuần\:hoàn\:f(x)=X[n]=5\sin(2n)
|
f(x,y)=x^3+6xy+y^3
|
f(x,y)=x^{3}+6xy+y^{3}
|
extreme f(x,y)=xy-5x+15
|
extreme\:f(x,y)=xy-5x+15
|
f(x,y)=ln(4x^2+9y^2+36)
|
f(x,y)=\ln(4x^{2}+9y^{2}+36)
|
extreme f(x)= x/(x^2+5x+4)
|
extreme\:f(x)=\frac{x}{x^{2}+5x+4}
|