limit as x approaching 4 of (x+3)^2
|
\lim_{x\to\:4}((x+3)^{2})
|
limit as x approaching 0 of (cos(3x)-1)/(sin(7x))
|
\lim_{x\to\:0}(\frac{\cos(3x)-1}{\sin(7x)})
|
limit as x approaching infinity of (sin(x-1))/(3x-3)
|
\lim_{x\to\:\infty\:}(\frac{\sin(x-1)}{3x-3})
|
limit as x approaching 3 of (x^2-9)/(2x^2+7x+3)
|
\lim_{x\to\:3}(\frac{x^{2}-9}{2x^{2}+7x+3})
|
(d^2}{dx^2}(e^{-\frac{x^2)/2})
|
\frac{d^{2}}{dx^{2}}(e^{-\frac{x^{2}}{2}})
|
(d^3)/(dx^3)(sin(x))
|
\frac{d^{3}}{dx^{3}}(\sin(x))
|
limit as x approaching 0 of (sqrt(2+x-\sqrt{2)})/x
|
\lim_{x\to\:0}(\frac{\sqrt{2+x-\sqrt{2}}}{x})
|
limit as x approaching 5 of (1-sqrt(x)-4)/(x-5)
|
\lim_{x\to\:5}(\frac{1-\sqrt{x}-4}{x-5})
|
limit as x approaching 0+of tan(4x)
|
\lim_{x\to\:0+}(\tan(4x))
|
implicit derivative (dy)/(dx),y=(1-2x^2)^3
|
implicit\:derivative\:\frac{dy}{dx},y=(1-2x^{2})^{3}
|
derivative of 4/(x^7)
|
derivative\:of\:\frac{4}{x^{7}}
|
integral from 0 to (pi)/2 of sin^9(xco)s^5x
|
\int_{\:0}^{\frac{\pi}{2}}\sin^{9}(xco)s^{5}xdx
|
(\partial)/(\partial x)(sqrt(y)+\sqrt[3]{y})
|
\frac{\partial\:}{\partial\:x}(\sqrt{y}+\sqrt[3]{y})
|
derivative of sqrt(18-2x)
|
derivative\:of\:\sqrt{18-2x}
|
y^{\prime}+(1-2x)/(x^2)y-1=0
|
y^{\prime\:}+\frac{1-2x}{x^{2}}y-1=0
|
taylor f(x)=2^x
|
taylor\:f(x)=2^{x}
|
limit as x approaching-infinity of 6/((1+e^{-x))}
|
\lim_{x\to\:-\infty\:}(\frac{6}{(1+e^{-x})})
|
limit as x approaching 3+of tan^{-1}(e^{1/((3-1))})
|
\lim_{x\to\:3+}(\tan^{-1}(e^{\frac{1}{(3-1)}}))
|
limit as x approaching 7 of (x^3-4x^2-19x-14)/(x^2-8x-7)
|
\lim_{x\to\:7}(\frac{x^{3}-4x^{2}-19x-14}{x^{2}-8x-7})
|
y^{\prime \prime}+2y^{\prime}+y=x^2-2x+1
|
y^{\prime\:\prime\:}+2y^{\prime\:}+y=x^{2}-2x+1
|
derivative of (x^4ln(x)^5)
|
\frac{d}{dx}((x^{4}\ln(x))^{5})
|
limit as x approaching 6 of ln(6-x)
|
\lim_{x\to\:6}(\ln(6-x))
|
limit as x approaching 0 of x-1/x
|
\lim_{x\to\:0}(x-\frac{1}{x})
|
limit as x approaching 0+of 4sin(x)ln(x)
|
\lim_{x\to\:0+}(4\sin(x)\ln(x))
|
derivative of 1/(sqrt(1+x^2))
|
derivative\:of\:\frac{1}{\sqrt{1+x^{2}}}
|
(\partial)/(\partial y)(xy+yz+zy)
|
\frac{\partial\:}{\partial\:y}(xy+yz+zy)
|
limit as x approaching 3 of (-4)/(2x-5)
|
\lim_{x\to\:3}(\frac{-4}{2x-5})
|
(\partial)/(\partial y)((x^2-y^2)/(sqrt(x^2+y^2)))
|
\frac{\partial\:}{\partial\:y}(\frac{x^{2}-y^{2}}{\sqrt{x^{2}+y^{2}}})
|
derivative of x+6x^{2/3}
|
\frac{d}{dx}(x+6x^{\frac{2}{3}})
|
xy^{\prime}=xsqrt(y)+2sqrt(y)
|
xy^{\prime\:}=x\sqrt{y}+2\sqrt{y}
|
(d^2)/(dx^2)(sqrt(x+2))
|
\frac{d^{2}}{dx^{2}}(\sqrt{x+2})
|
integral of (x^2+1)/(sqrt(x))
|
\int\:\frac{x^{2}+1}{\sqrt{x}}dx
|
tangent of-1/4 x^2,\at (-2,-1)
|
tangent\:of\:-\frac{1}{4}x^{2},\at\:(-2,-1)
|
tangent of (1+2x)^2
|
tangent\:of\:(1+2x)^{2}
|
y^{\prime \prime}-8y^{\prime}+41y=0
|
y^{\prime\:\prime\:}-8y^{\prime\:}+41y=0
|
derivative of x^2-x+1^{-7}
|
\frac{d}{dx}(x^{2}-x+1)^{-7}
|
derivative of f(x)=-1/9 (x^{-9}-x^{18})
|
derivative\:of\:f(x)=-\frac{1}{9}(x^{-9}-x^{18})
|
integral of (x-1)/(x(x^2-5x+6))
|
\int\:\frac{x-1}{x(x^{2}-5x+6)}dx
|
integral of (3-5x)^2
|
\int\:(3-5x)^{2}dx
|
(dy)/(dx)=2ycos(x)
|
\frac{dy}{dx}=2ycos(x)
|
limit as (x,y) approaching (-5,-1) of ((-4x^2-4y^2+1))/(x^2+y^2+4)
|
\lim_{(\:x,y)\to\:(-5,-1)}(\frac{(-4x^{2}-4y^{2}+1)}{x^{2}+y^{2}+4})
|
limit as x approaching 4 of-x^2-9x-8
|
\lim_{x\to\:4}(-x^{2}-9x-8)
|
derivative of (5sqrt(x)/(2x^{-2)})
|
\frac{d}{dx}(\frac{5\sqrt{x}}{2x^{-2}})
|
limit as x approaching infinity of 3+x^2
|
\lim_{x\to\:\infty\:}(3+x^{2})
|
diện tích 2y=3sqrt(x),y=4,2y+3x=6
|
diện\:tích\:2y=3\sqrt{x},y=4,2y+3x=6
|
limit as x approaching 0 of (sin^2(x))/(1-cos(4x))
|
\lim_{x\to\:0}(\frac{\sin^{2}(x)}{1-\cos(4x)})
|
d/(dt)(-0.33e^{-0.86t}+0.015e^{-27.71t}+0.36)
|
\frac{d}{dt}(-0.33e^{-0.86t}+0.015e^{-27.71t}+0.36)
|
integral of 1/(16e^{-5x)+e^{5x}}
|
\int\:\frac{1}{16e^{-5x}+e^{5x}}dx
|
integral of (x-1)/((x-2)(x^2-2x+2)^2)
|
\int\:(x-1)/((x-2)(x^{2}-2x+2)^{2})dx
|
limit as x approaching 0+of (3x)^{sin(x)}
|
\lim_{x\to\:0+}((3x)^{\sin(x)})
|
nghịch đảo laplace (169)/(s(s^2+10s+169))
|
nghịch\:đảo\:laplace\:\frac{169}{s(s^{2}+10s+169)}
|
sum from n=0 to infinity of ((x-2)^n)/(3^n)
|
\sum_{n=0}^{\infty\:}\frac{(x-2)^{n}}{3^{n}}
|
implicit derivative (d^2y)/(dx^2),3x^2+y^2=6
|
implicit\:derivative\:\frac{d^{2}y}{dx^{2}},3x^{2}+y^{2}=6
|
25y^{\prime \prime}-40y^{\prime}+16y=0,y(0)=2,y^{\prime}(0)=-3
|
25y^{\prime\:\prime\:}-40y^{\prime\:}+16y=0,y(0)=2,y^{\prime\:}(0)=-3
|
integral of 5sin^3(x)cos^7(x)
|
\int\:5\sin^{3}(x)\cos^{7}(x)dx
|
integral from 1 to 2 of ln|x^2+1|
|
\int_{\:1}^{2}\ln|x^{2}+1|dx
|
integral from 0 to 1-x of integral from 2y to 1+y^2 of x
|
\int_{\:0}^{1-x}\int_{2y}^{1+y^{2}}xdz
|
derivative of ln(4x-1)
|
\frac{d}{dx}(\ln(4x-1))
|
limit as x approaching infinity of (((ln(x))^2))/x
|
\lim_{x\to\:\infty\:}(\frac{((\ln(x))^{2})}{x})
|
limit as x approaching+infinity+of x*+e^{-x/2}
|
\lim_{x\to\:+\infty\:+}(x\cdot\:+e^{-\frac{x}{2}})
|
limit as x approaching (0)+of (8x+1)^{cot(x)}
|
\lim_{x\to\:(0)+}((8x+1)^{\cot(x)})
|
limit as x approaching 4 of ((x^2-2x-8))/((x-4))
|
\lim_{x\to\:4}(\frac{(x^{2}-2x-8)}{(x-4)})
|
integral from 4 to 5 of 1/(5x-1)
|
\int_{\:4}^{5}\frac{1}{5x-1}dx
|
limit as x approaching-1 of (\sqrt[3]{x+2}-1)/(x+1)
|
\lim_{x\to\:-1}(\frac{\sqrt[3]{x+2}-1}{x+1})
|
xy^{\prime}+3y=(4e^{2x})/(x^2)
|
xy^{\prime\:}+3y=\frac{4e^{2x}}{x^{2}}
|
limit as x approaching 1 of (2x)/(x-1)
|
\lim_{x\to\:1}(\frac{2x}{x-1})
|
derivative of f(x)=9x^5(x^3-2x)
|
derivative\:of\:f(x)=9x^{5}(x^{3}-2x)
|
y^{\prime \prime}-2y^{\prime}-63y=0
|
y^{\prime\:\prime\:}-2y^{\prime\:}-63y=0
|
sum from n=1 to infinity of 1/(n^{-1)}
|
\sum_{n=1}^{\infty\:}\frac{1}{n^{-1}}
|
tangent of (4-x)y^2=x^3,\at (2,2)
|
tangent\:of\:(4-x)y^{2}=x^{3},\at\:(2,2)
|
limit as x approaching 0 of (f(x))/x*(x+2)^2
|
\lim_{x\to\:0}(\frac{f(x)}{x}\cdot\:(x+2)^{2})
|
limit as x approaching-infinity of e^x*x^2
|
\lim_{x\to\:-\infty\:}(e^{x}\cdot\:x^{2})
|
limit as x approaching infinity of ln(x+4)-ln(x)
|
\lim_{x\to\:\infty\:}(\ln(x+4)-\ln(x))
|
(d^2y)/(d^2x)+(4dy)/(dx)+3y=0
|
\frac{d^{2}y}{d^{2}x}+\frac{4dy}{dx}+3y=0
|
limit as x approaching 0 of x/(x^2-4)
|
\lim_{x\to\:0}(\frac{x}{x^{2}-4})
|
limit as x approaching 1 of (x-1)/(\sqrt[3]{x)-1}
|
\lim_{x\to\:1}(\frac{x-1}{\sqrt[3]{x}-1})
|
t^3(dy)/(dt)+3t^2y=2cos(t)
|
t^{3}\frac{dy}{dt}+3t^{2}y=2\cos(t)
|
limit as x approaching-infinity of 1/(e^x)
|
\lim_{x\to\:-\infty\:}(\frac{1}{e^{x}})
|
tangent of f(x)=3-2x,\at (-1,5)
|
tangent\:of\:f(x)=3-2x,\at\:(-1,5)
|
limit as x approaching infinity of (5x)/(e^{2x)}
|
\lim_{x\to\:\infty\:}(\frac{5x}{e^{2x}})
|
taylor xcos(2x),1
|
taylor\:xcos(2x),1
|
(\partial)/(\partial y)(-y/(x^2))
|
\frac{\partial\:}{\partial\:y}(-\frac{y}{x^{2}})
|
integral of x^{15}e^{-x^{16}}
|
\int\:x^{15}e^{-x^{16}}dx
|
derivative of f(t)=2t^3-3t^2-4t
|
derivative\:of\:f(t)=2t^{3}-3t^{2}-4t
|
limit as n approaching infinity of \sum_{i=1}^n((18i^2)/(n^2)-1)*3/n
|
\lim_{n\to\:\infty\:}(\sum_{i=1}^{n}(\frac{18i^{2}}{n^{2}}-1)\cdot\:\frac{3}{n})
|
(\partial)/(\partial x)((4pi^2x)/(y^2))
|
\frac{\partial\:}{\partial\:x}(\frac{4π^{2}x}{y^{2}})
|
derivative of 9xe^xcsc(x)
|
derivative\:of\:9xe^{x}\csc(x)
|
limit as t approaching 0 of e^{-7t}i+(t^2)/(sin^2(t))j+sin(7t)k
|
\lim_{t\to\:0}(e^{-7t}i+\frac{t^{2}}{\sin^{2}(t)}j+\sin(7t)k)
|
diện tích 1/x ,1,2
|
diện\:tích\:\frac{1}{x},1,2
|
limit as x approaching-3 of (2x^2-18)/(x^2-x-12)
|
\lim_{x\to\:-3}(\frac{2x^{2}-18}{x^{2}-x-12})
|
tangent of 2xy-y^2=1,\at (1,1)
|
tangent\:of\:2xy-y^{2}=1,\at\:(1,1)
|
integral of ((x^2+1))/((x-3)(x-2)^2)
|
\int\:\frac{(x^{2}+1)}{(x-3)(x-2)^{2}}dx
|
integral of 4x^7
|
\int\:4x^{7}dx
|
(cos(y)+2)(dy)/(dx)=2x
|
(\cos(y)+2)\frac{dy}{dx}=2x
|
implicit derivative (dy)/(dx),xy^3+10y^{11}=9
|
implicit\:derivative\:\frac{dy}{dx},xy^{3}+10y^{11}=9
|
diện tích y^2-3x=1,x-y=3
|
diện\:tích\:y^{2}-3x=1,x-y=3
|
(dy)/(dt)=-100y+101cos(t)+99sin(t)
|
\frac{dy}{dt}=-100y+101\cos(t)+99\sin(t)
|
tangent of y=2e^x-3x+1,\at x=0
|
tangent\:of\:y=2e^{x}-3x+1,\at\:x=0
|
derivative of 4x^2-12x+5
|
derivative\:of\:4x^{2}-12x+5
|
limit as x approaching-2 of sqrt(5x^2+3x+2)
|
\lim_{x\to\:-2}(\sqrt{5x^{2}+3x+2})
|