y\prime \prime (t)-by=0
|
y\prime\:\prime\:(t)-by=0
|
y\prime \prime (t)+13y\prime (t)=0,y(0)=-9,y\prime (0)=13
|
y\prime\:\prime\:(t)+13y\prime\:(t)=0,y(0)=-9,y\prime\:(0)=13
|
49y\prime \prime (t)-168y\prime (t)+144y=0
|
49y\prime\:\prime\:(t)-168y\prime\:(t)+144y=0
|
(D^3-8)y=0
|
(D^{3}-8)y=0
|
(d^2)/(dt^2)(y)+d/(dt)(y)+3y=0, d/(dt)(y(0))=2,y(0)=1
|
\frac{d^{2}}{dt^{2}}(y)+\frac{d}{dt}(y)+3y=0,\frac{d}{dt}(y(0))=2,y(0)=1
|
9y\prime \prime (t)+60y\prime (t)+100y=0
|
9y\prime\:\prime\:(t)+60y\prime\:(t)+100y=0
|
5/8 x\prime \prime (t)+40x=0,x(0)= 1/4 ,x\prime (0)=0
|
\frac{5}{8}x\prime\:\prime\:(t)+40x=0,x(0)=\frac{1}{4},x\prime\:(0)=0
|
derivative of ln(1-2x)
|
\frac{d}{dx}(\ln(1-2x))
|
y\prime \prime (t)+6y\prime (t)+25y=0,y(0)=3,y\prime (0)=-6
|
y\prime\:\prime\:(t)+6y\prime\:(t)+25y=0,y(0)=3,y\prime\:(0)=-6
|
y\prime \prime (t)+6y\prime (t)+25y=0,y(0)=0,y\prime (0)=2
|
y\prime\:\prime\:(t)+6y\prime\:(t)+25y=0,y(0)=0,y\prime\:(0)=2
|
4(d^2)/(dx^2)(y)+36y=0
|
4\frac{d^{2}}{dx^{2}}(y)+36y=0
|
9y\prime \prime (x)-12y\prime (x)+4y=0,y(0)=e^{2/3 x}
|
9y\prime\:\prime\:(x)-12y\prime\:(x)+4y=0,y(0)=e^{\frac{2}{3}x}
|
y\prime \prime \prime (t)-6y\prime \prime (t)+y\prime (t)-6y=0
|
y\prime\:\prime\:\prime\:(t)-6y\prime\:\prime\:(t)+y\prime\:(t)-6y=0
|
2y-3y\prime \prime (t)=0
|
2y-3y\prime\:\prime\:(t)=0
|
y\prime \prime (t)+4y\prime (t)-7y=0
|
y\prime\:\prime\:(t)+4y\prime\:(t)-7y=0
|
y\prime (t)-y\prime \prime (t)=0
|
y\prime\:(t)-y\prime\:\prime\:(t)=0
|
x\prime \prime (t)+2x\prime (t)+6x=0
|
x\prime\:\prime\:(t)+2x\prime\:(t)+6x=0
|
(\partial)/(\partialtheta)(-e^{-3r}sin(theta))
|
\frac{\partial}{\partial\theta}(-e^{-3r}\sin(\theta))
|
y\prime \prime \prime \prime (t)+20y\prime \prime (t)-100y=0
|
y\prime\:\prime\:\prime\:\prime\:(t)+20y\prime\:\prime\:(t)-100y=0
|
y\prime \prime (t)+16y=0,y(pi/(12))=8,y\prime (pi/(12))=-16
|
y\prime\:\prime\:(t)+16y=0,y(\frac{π}{12})=8,y\prime\:(\frac{π}{12})=-16
|
y\prime \prime (t)-3y\prime (t)+7y=0
|
y\prime\:\prime\:(t)-3y\prime\:(t)+7y=0
|
y\prime \prime \prime (t)-5y\prime \prime (t)+17y-13y=0
|
y\prime\:\prime\:\prime\:(t)-5y\prime\:\prime\:(t)+17y-13y=0
|
y\prime \prime (t)+4y\prime (t)+5y=0,y(0)=1,y\prime (0)=2
|
y\prime\:\prime\:(t)+4y\prime\:(t)+5y=0,y(0)=1,y\prime\:(0)=2
|
(d^2)/(dx^2)(f(x))=af(x)
|
\frac{d^{2}}{dx^{2}}(f(x))=af(x)
|
y\prime \prime \prime (t)+36y\prime (t)=0,y\prime \prime (0)=108
|
y\prime\:\prime\:\prime\:(t)+36y\prime\:(t)=0,y\prime\:\prime\:(0)=108
|
x\prime \prime (t)+2x=0,x(0)=-1,x\prime (0)=-2sqrt(2)
|
x\prime\:\prime\:(t)+2x=0,x(0)=-1,x\prime\:(0)=-2\sqrt{2}
|
y\prime \prime (t)=3y\prime (t)+5y,y(2)=8
|
y\prime\:\prime\:(t)=3y\prime\:(t)+5y,y(2)=8
|
y\prime \prime (t)+36y=0,y(0)=4,y\prime (0)=-5
|
y\prime\:\prime\:(t)+36y=0,y(0)=4,y\prime\:(0)=-5
|
limit as x approaching infinity of (x^4-6x^2+x)/(x^3-x+9)
|
\lim_{x\to\:\infty\:}(\frac{x^{4}-6x^{2}+x}{x^{3}-x+9})
|
y\prime \prime (x)-y\prime (x)-72y=0,y(1)=e^{-8x}
|
y\prime\:\prime\:(x)-y\prime\:(x)-72y=0,y(1)=e^{-8x}
|
10y\prime \prime (t)+1000y=0
|
10y\prime\:\prime\:(t)+1000y=0
|
(D^3-4D^2+5D)y=0
|
(D^{3}-4D^{2}+5D)y=0
|
y\prime \prime (t)+10y\prime (t)-24y=0
|
y\prime\:\prime\:(t)+10y\prime\:(t)-24y=0
|
4y\prime \prime \prime \prime (t)-5y\prime \prime (t)-9y=0
|
4y\prime\:\prime\:\prime\:\prime\:(t)-5y\prime\:\prime\:(t)-9y=0
|
y\prime \prime (t)-12y\prime (t)+36y=0,y(0)=4,y\prime (0)=15.4519
|
y\prime\:\prime\:(t)-12y\prime\:(t)+36y=0,y(0)=4,y\prime\:(0)=15.4519
|
y\prime \prime \prime (t)-3y\prime \prime (t)-34y\prime (t)-48y=0
|
y\prime\:\prime\:\prime\:(t)-3y\prime\:\prime\:(t)-34y\prime\:(t)-48y=0
|
tuyến tính y\prime \prime (t)-3/2 y\prime (t)-y=0
|
tuyến\:tính\:y\prime\:\prime\:(t)-\frac{3}{2}y\prime\:(t)-y=0
|
y\prime \prime (t)-12y\prime (t)+36y=0,y(0)=4,y\prime (0)=15.4512
|
y\prime\:\prime\:(t)-12y\prime\:(t)+36y=0,y(0)=4,y\prime\:(0)=15.4512
|
y\prime \prime (t)-4y\prime (t)-5y=0,y(1)=0,y\prime (1)=9
|
y\prime\:\prime\:(t)-4y\prime\:(t)-5y=0,y(1)=0,y\prime\:(1)=9
|
limit as x approaching infinity of 10
|
\lim_{x\to\:\infty\:}(10)
|
y\prime \prime \prime (t)+5y\prime \prime (t)-17y\prime (t)-21y=0
|
y\prime\:\prime\:\prime\:(t)+5y\prime\:\prime\:(t)-17y\prime\:(t)-21y=0
|
2y\prime \prime (t)-11y\prime (t)+5y=0,y(0)=13,y\prime (0)=47
|
2y\prime\:\prime\:(t)-11y\prime\:(t)+5y=0,y(0)=13,y\prime\:(0)=47
|
y\prime \prime \prime (t)+36y\prime (t)=0
|
y\prime\:\prime\:\prime\:(t)+36y\prime\:(t)=0
|
9y\prime \prime (t)-48y\prime (t)+64y=0
|
9y\prime\:\prime\:(t)-48y\prime\:(t)+64y=0
|
y\prime \prime (t)+7y\prime (t)+10y=0,y(0)=1,y\prime (0)=1
|
y\prime\:\prime\:(t)+7y\prime\:(t)+10y=0,y(0)=1,y\prime\:(0)=1
|
755x\prime \prime (t)+2x\prime (t)+10x=0
|
755x\prime\:\prime\:(t)+2x\prime\:(t)+10x=0
|
(D^{(6)}-4D^{(4)}+4D^{(2)})y=0
|
(D^{(6)}-4D^{(4)}+4D^{(2)})y=0
|
y\prime \prime (t)+12y\prime (t)+27y=0,y(0)=12,y\prime (0)=-84
|
y\prime\:\prime\:(t)+12y\prime\:(t)+27y=0,y(0)=12,y\prime\:(0)=-84
|
y\prime \prime \prime (t)-3y\prime (t)=0
|
y\prime\:\prime\:\prime\:(t)-3y\prime\:(t)=0
|
y\prime \prime (t)+10y\prime (t)=-21y
|
y\prime\:\prime\:(t)+10y\prime\:(t)=-21y
|
integral of ((6x^2+5x+6))/((x^2+1)^2)
|
\int\:\frac{(6x^{2}+5x+6)}{(x^{2}+1)^{2}}dx
|
integral from 0 to pi of sqrt(1+cos^2(x))
|
\int_{\:0}^{\pi}\sqrt{1+\cos^{2}(x)}dx
|
2(D^4+11D^3-4D^2-69D+34)y=0
|
2(D^{4}+11D^{3}-4D^{2}-69D+34)y=0
|
y\prime \prime (t)+2y+3y=0
|
y\prime\:\prime\:(t)+2y+3y=0
|
tuyến tính 4y\prime \prime (t)+32y\prime (t)+113y=0
|
tuyến\:tính\:4y\prime\:\prime\:(t)+32y\prime\:(t)+113y=0
|
y\prime \prime (t)+18y\prime (t)+80y=0,y(0)=8,y\prime (0)=-76
|
y\prime\:\prime\:(t)+18y\prime\:(t)+80y=0,y(0)=8,y\prime\:(0)=-76
|
tuyến tính y\prime \prime (t)+16y\prime (t)+73y=0
|
tuyến\:tính\:y\prime\:\prime\:(t)+16y\prime\:(t)+73y=0
|
7y\prime \prime (t)+3y\prime (t)+7y=0
|
7y\prime\:\prime\:(t)+3y\prime\:(t)+7y=0
|
y\prime \prime (t)-4y\prime (t)-5y=0\quad
|
y\prime\:\prime\:(t)-4y\prime\:(t)-5y=0\quad\:
|
(d^2)/(dt^2)(y)-6 d/(dt)(y)+73y=0,y(pi/(16))=4,y(0)=10
|
\frac{d^{2}}{dt^{2}}(y)-6\frac{d}{dt}(y)+73y=0,y(\frac{π}{16})=4,y(0)=10
|
x\prime \prime (t)=3x
|
x\prime\:\prime\:(t)=3x
|
sum from n=0 to infinity of ((7^n))/((-5)^{n-1)}
|
\sum_{n=0}^{\infty\:}\frac{(7^{n})}{(-5)^{n-1}}
|
2y\prime \prime (t)-5y\prime (t)-2y=0
|
2y\prime\:\prime\:(t)-5y\prime\:(t)-2y=0
|
y\prime \prime \prime (t)-3y\prime \prime (t)-22y\prime (t)+24y=0
|
y\prime\:\prime\:\prime\:(t)-3y\prime\:\prime\:(t)-22y\prime\:(t)+24y=0
|
y\prime \prime (t)-5y\prime (t)=0,y\prime (0)=2
|
y\prime\:\prime\:(t)-5y\prime\:(t)=0,y\prime\:(0)=2
|
y\prime \prime (t)+7y\prime (t)=0,y(0)=1,y\prime (0)=1
|
y\prime\:\prime\:(t)+7y\prime\:(t)=0,y(0)=1,y\prime\:(0)=1
|
y\prime \prime (t)+(a+2)y\prime (t)+4y=0
|
y\prime\:\prime\:(t)+(a+2)y\prime\:(t)+4y=0
|
y\prime \prime (t)-5y\prime (t)+6.25y=0
|
y\prime\:\prime\:(t)-5y\prime\:(t)+6.25y=0
|
3y\prime \prime (t)-5y=0
|
3y\prime\:\prime\:(t)-5y=0
|
u\prime \prime (t)-16a^2u(t)=0
|
u\prime\:\prime\:(t)-16a^{2}u(t)=0
|
y\prime \prime (t)+14y\prime (t)+49y=0,y(-4)=-1,y(-4)=5
|
y\prime\:\prime\:(t)+14y\prime\:(t)+49y=0,y(-4)=-1,y(-4)=5
|
integral of 1/5-6/x
|
\int\:\frac{1}{5}-\frac{6}{x}dx
|
y\prime \prime \prime (t)-5y\prime \prime (t)+4y\prime (t)-20y=0
|
y\prime\:\prime\:\prime\:(t)-5y\prime\:\prime\:(t)+4y\prime\:(t)-20y=0
|
y\prime \prime (t)-8y\prime (t)+65y=0
|
y\prime\:\prime\:(t)-8y\prime\:(t)+65y=0
|
y\prime \prime \prime (t)-6y\prime \prime (t)+5y\prime (t)+12y=0
|
y\prime\:\prime\:\prime\:(t)-6y\prime\:\prime\:(t)+5y\prime\:(t)+12y=0
|
y\prime \prime (t)+32y\prime (t)+224y=0
|
y\prime\:\prime\:(t)+32y\prime\:(t)+224y=0
|
x\prime \prime (t)=x*5.3
|
x\prime\:\prime\:(t)=x\cdot\:5.3
|
y\prime \prime (t)=2y\prime (t)-y
|
y\prime\:\prime\:(t)=2y\prime\:(t)-y
|
5y\prime \prime (t)-15y=0
|
5y\prime\:\prime\:(t)-15y=0
|
y\prime \prime (t)+8y\prime (t)+210y=0,y(0)=-1,y\prime (0)=0
|
y\prime\:\prime\:(t)+8y\prime\:(t)+210y=0,y(0)=-1,y\prime\:(0)=0
|
((d^2)/(dx^2)(y)-2(dy)/(dx)+5y)^3=0
|
(\frac{d^{2}}{dx^{2}}(y)-2\frac{dy}{dx}+5y)^{3}=0
|
sum from n=1 to infinity of (n!)/(106^n)
|
\sum_{n=1}^{\infty\:}\frac{n!}{106^{n}}
|
y\prime \prime (t)-11y\prime (t)-24y=0
|
y\prime\:\prime\:(t)-11y\prime\:(t)-24y=0
|
x\prime \prime \prime \prime (t)+2x\prime \prime (t)+x=0
|
x\prime\:\prime\:\prime\:\prime\:(t)+2x\prime\:\prime\:(t)+x=0
|
(d^2)/(dt^2)(f(t))+4 d/(dt)(f(t))+13f(t)=0
|
\frac{d^{2}}{dt^{2}}(f(t))+4\frac{d}{dt}(f(t))+13f(t)=0
|
27(d^3)/(dx^3)(y)+y=0
|
27\frac{d^{3}}{dx^{3}}(y)+y=0
|
y\prime \prime (t)+6y\prime (t)+25y=0,y(0)=1,y\prime (0)=-1
|
y\prime\:\prime\:(t)+6y\prime\:(t)+25y=0,y(0)=1,y\prime\:(0)=-1
|
(x\prime \prime (t)+(n-1)x\prime (t))/r =0
|
\frac{x\prime\:\prime\:(t)+(n-1)x\prime\:(t)}{r}=0
|
y\prime \prime (t)+34y=0
|
y\prime\:\prime\:(t)+34y=0
|
(D^3-4D)y=0
|
(D^{3}-4D)y=0
|
y\prime \prime (t)+10y\prime (t)-11y=0
|
y\prime\:\prime\:(t)+10y\prime\:(t)-11y=0
|
d/(dt)(e^{3tsin(2t)})
|
\frac{d}{dt}(e^{3tsin(2t)})
|
(4D^3-13D-6)y=0
|
(4D^{3}-13D-6)y=0
|
r^2x\prime \prime (t)+rx\prime (t)-n^2x=0
|
r^{2}x\prime\:\prime\:(t)+rx\prime\:(t)-n^{2}x=0
|
9y\prime \prime (t)+9y\prime (t)+2y=0
|
9y\prime\:\prime\:(t)+9y\prime\:(t)+2y=0
|
y\prime \prime (t)+y=0,y(pi/2)=2,y\prime (pi/2)=1
|
y\prime\:\prime\:(t)+y=0,y(\frac{π}{2})=2,y\prime\:(\frac{π}{2})=1
|
3y\prime \prime \prime (t)+2y\prime (t)=0
|
3y\prime\:\prime\:\prime\:(t)+2y\prime\:(t)=0
|
(d^2)/(dt^2)(x)+8*d/(dt)(x)+4x=0
|
\frac{d^{2}}{dt^{2}}(x)+8\cdot\:\frac{d}{dt}(x)+4x=0
|
y\prime \prime \prime (t)-y\prime \prime (t)-34y\prime (t)-56y=0
|
y\prime\:\prime\:\prime\:(t)-y\prime\:\prime\:(t)-34y\prime\:(t)-56y=0
|
y\prime \prime (t)+ay=0,y(0)=0,y\prime (1)=0
|
y\prime\:\prime\:(t)+ay=0,y(0)=0,y\prime\:(1)=0
|